Assessment of the Supply Chain under Uncertainty: The Case of Lithium

Author:

Calisaya-Azpilcueta DanielORCID,Herrera-Leon SebastiánORCID,Lucay Freddy A.ORCID,Cisternas Luis A.ORCID

Abstract

Modeling the global markets is complicated due to the existence of uncertainty in the information available. In addition, the lithium supply chain presents a complex network due to interconnections that it presents and the interdependencies among its elements. This complex supply chain has one large market, electric vehicles (EVs). EV production is increasing the global demand for lithium; in terms of the lithium supply chain, an EV requires lithium-ion batteries, and lithium-ion batteries require lithium carbonate and lithium hydroxide. Realistically, the mass balance in the global lithium supply chain involves more elements and more markets, and together with the assortment of databases in the literature, make the modeling through deterministic models difficult. Modeling the global supply chain under uncertainty could facilitate an assessment of the lithium supply chain between production and demand, and therefore could help to determine the distribution of materials for identifying the variables with the highest importance in an undersupply scenario. In the literature, deterministic models are commonly used to model the lithium supply chain but do not simultaneously consider the variation of data among databases for the lithium supply chain. This study performs stochastic modeling of the lithium supply chain by combining a material flow analysis with an uncertainty analysis and global sensitivity analysis. The combination of these methods evaluates an undersupply scenario. The stochastic model simulations allow a comparison between the known demand and the supply calculated under uncertainty, in order to identify the most important variables affecting lithium distribution. The dynamic simulations show that the most probable scenario is one where supply does not cover the increasing demand, and the stochastic modeling classifies the variables by their importance and sensibility. In conclusion, the most important variables in a scenario of EV undersupply are the lithium hydroxide produced from lithium carbonate, the lithium hydroxide produced from solid rock, and the production of traditional batteries. The global sensitivity analysis indicates that the critical variables which affect the uncertainty in EV production change with time.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference51 articles.

1. Metal supply constraints for a low-carbon economy?

2. Lithium 101;Hocking,2016

3. Lithium Report 2018;Staiger,2018

4. Understanding the Differences Between Deterministic and Stochastic Modelshttps://www.linkedin.com/pulse/understanding-differences-between-deterministic-stochastic-paul-dalen

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3