Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST

Author:

Thomsen Jonas BjergORCID,Bergua RogerORCID,Jonkman JasonORCID,Robertson AmyORCID,Mendoza NicoleORCID,Brown Cameron,Galinos Christos,Stiesdal Henrik

Abstract

Floating offshore wind turbine technology has seen an increasing and continuous development in recent years. When designing the floating platforms, both experimental and numerical tools are applied, with the latter often using time-domain solvers based on hydro-load estimation from a Morison approach or a boundary element method. Commercial software packages such as OrcaFlex, or open-source software such as OpenFAST, are often used where the floater is modeled as a rigid six degree-of-freedom body with loads applied at the center of gravity. However, for final structural design, it is necessary to have information on the distribution of loads over the entire body and to know local internal loads in each component. This paper uses the TetraSpar floating offshore wind turbine design as a case study to examine new modeling approaches in OrcaFlex and OpenFAST that provide this information. The study proves the possibility of applying the approach and the extraction of internal loads, while also presenting an initial code-to-code verification between OrcaFlex and OpenFAST. As can be expected, comparing the flexible model to a rigid-body model proves how motion and loads are affected by the flexibility of the structure. OrcaFlex and OpenFAST generally agree, but there are some differences in results due to different modeling approaches. Since no experimental data are available in the study, this paper only forms a baseline for future studies but still proves and describes the possibilities of the approach and codes.

Funder

Energy Technology Development and Demonstration Program

National Renewable Energy Laboratory

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Our Energy, Our Future,2019

2. Future of Wind—Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects,2019

3. New Energy Outlook 2020—Executive Summary,2020

4. World Energy Transistion Outlook—1.5 °C Pathway,2021

5. Floating Offshore Wind Vision Statement,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3