A Fast and Accurate Wind Speed and Direction Nowcasting Model for Renewable Energy Management Systems

Author:

Al-Zadjali Saira,Al Maashri AhmedORCID,Al-Hinai AmerORCID,Al Abri Rashid,Gajare SwaroopORCID,Al Yahyai SultanORCID,Bakhtvar MostafaORCID

Abstract

To plan operations and avoid any grid disturbances, power utilities require accurate power generation estimates for renewable generation. The generation estimates for wind power stations require an accurate prediction of wind speed and direction. This paper proposes a new prediction model for nowcasting the wind speed and direction, which can be used to predict the output of a wind power plant. The proposed model uses perturbed observations to train the ensemble networks. The trained model is then used to predict the wind speed and direction. The paper performs a comparative assessment of three artificial neural network models. It also studies the performance of introducing perturbed observations to the model using six different interpolation techniques. For each technique, the computational efficiency is measured and assessed. Furthermore, the paper presents an exhaustive investigation of the performance of neural network types and several techniques in training, data splitting, and interpolation. To check the efficacy of the proposed model, the power output from a real wind farm is predicted and compared with the actual recorded measurements. The results of the comprehensive analysis show that the proposed model outperforms contending models in terms of accuracy and execution time. Therefore, this model can be used by operators to reliably generate a dispatch plan.

Funder

His Majesty Trust Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3