Predicting Electric Vehicle Charging Station Availability Using Ensemble Machine Learning

Author:

Hecht ChristopherORCID,Figgener JanORCID,Sauer Dirk UweORCID

Abstract

Electric vehicles may reduce greenhouse gas emissions from individual mobility. Due to the long charging times, accurate planning is necessary, for which the availability of charging infrastructure must be known. In this paper, we show how the occupation status of charging infrastructure can be predicted for the next day using machine learning models— Gradient Boosting Classifier and Random Forest Classifier. Since both are ensemble models, binary training data (occupied vs. available) can be used to provide a certainty measure for predictions. The prediction may be used to adapt prices in a high-load scenario, predict grid stress, or forecast available power for smart or bidirectional charging. The models were chosen based on an evaluation of 13 different, typically used machine learning models. We show that it is necessary to know past charging station usage in order to predict future usage. Other features such as traffic density or weather have a limited effect. We show that a Gradient Boosting Classifier achieves 94.8% accuracy and a Matthews correlation coefficient of 0.838, making ensemble models a suitable tool. We further demonstrate how a model trained on binary data can perform non-binary predictions to give predictions in the categories “low likelihood” to “high likelihood”.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. https://www.iea.org/reports/global-ev-outlook-2021

2. How Global Electric Car Sales Defied COVID-19 in 2020 https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020

3. Erstmals Rollen Eine Million Elektrofahrzeuge auf Deutschen Straßen: Mehr als 50 Prozent Dieser Elektrofahrzeuge Sind Rein Batteriebetrieben https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen-strassen.html

4. Diffusion of Innovations;Rogers,2003

5. Barriers to the adoption of electric cars: Evidence from an Italian survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3