Enhanced Hydrogen Storage Properties of Li-RHC System with In-House Synthesized AlTi3 Nanoparticles

Author:

Le Thi-ThuORCID,Pistidda ClaudioORCID,Puszkiel JuliánORCID,Castro Riglos María Victoria,Dreistadt David MichaelORCID,Klassen ThomasORCID,Dornheim Martin

Abstract

In recent years, the use of selected additives for improving the kinetic behavior of the system 2LiH + MgB2 (Li-RHC) has been investigated. As a result, it has been reported that some additives (e.g., 3TiCl3·AlCl3), by reacting with the Li-RHC components, form nanostructured phases (e.g., AlTi3) possessing peculiar microstructural properties capable of enhancing the system’s kinetic behavior. The effect of in-house-produced AlTi3 nanoparticles on the hydrogenation/dehydrogenation kinetics of the 2LiH + MgB2 (Li-RHC) system is explored in this work, with the aim of reaching high hydrogen storage performance. Experimental results show that the AlTi3 nanoparticles significantly improve the reaction rate of the Li-RHC system, mainly for the dehydrogenation process. The observed improvement is most likely due to the similar structural properties between AlTi3 and MgB2 phases which provide an energetically favored path for the nucleation of MgB2. In comparison with the pristine material, the Li-RHC doped with AlTi3 nanoparticles has about a nine times faster dehydrogenation rate. The results obtained from the kinetic modeling indicate a change in the Li-RHC hydrogenation reaction mechanism in the presence of AlTi3 nanoparticles.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference79 articles.

1. Hydrogen-storage materials for mobile applications

2. Hydrogen: the future energy carrier

3. Global Warming of 1.5 °C. Summary for Policymakers https://www.ipcc.ch/sr15/

4. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?

5. Hydrogen Storage Technology: Materials and Applications;Klebanoff,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3