Abstract
A lot of timeseries satellite products have been well documented in exploring changes in ecosystems. However, algorithms allowing for measuring the directions, magnitudes, and timing of vegetation change, evaluating the major driving factors, and eventually predicting the future trends are still insufficient. A novel framework focusing on addressing this problem was proposed in this study according to the temporal trajectory of Normalized Difference Vegetation Index (NDVI) timeseries of Moderate Resolution Imaging Spectroradiometer (MODIS). It divided the inter-annual changes in vegetation into four patterns: linear, exponential, logarithmic, and logistic. All the three non-linear patterns were differentiated automatically by fitting a logistic function with prolonged NDVI timeseries. Finally, features of vegetation changes including where, when and how, were evaluated by the parameters in the logistic function. Our results showed that 87.39% of vegetation covered areas (maximum mean growing season NDVI in the 17 years not less than 0.2) in the Shiyng River basin experienced significant changes during 2001–2017. The linear pattern, exponential pattern, logarithmic pattern, and logistic pattern accounted for 36.53%, 20.16%, 15.42%, and 15.27%, respectively. Increasing trends were dominant in all the patterns. The spatial distribution in both the patterns and the transition years at which vegetation gains/losses began or ended is of high consistency. The main years of transition for the exponential increasing pattern, the logarithmic increasing pattern, and the logarithmic increasing pattern were 2008–2011, 2003–2004, and 2009–2010, respectively. The period of 2006–2008 was the foremost period that NDVIs started to decline in Liangzhou Oasis and Minqin Oasis where almost all the decreasing patterns were concentrated. Potential disturbances of vegetation gradual changes in the basin are refer to as urbanization, expansion or reduction of agricultural oases, as well as measures in ecological projects, such as greenhouses building, afforestation, grazing prohibition, etc.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences