Age-Related Differences in Muscle Synergy Organization during Step Ascent at Different Heights and Directions

Author:

Baggen Remco J.ORCID,van Dieën Jaap H.ORCID,Van Roie EvelienORCID,Verschueren Sabine M.,Giarmatzis Georgios,Delecluse Christophe,Dominici NadiaORCID

Abstract

The aim of this study was to explore the underlying age-related differences in dynamic motor control during different step ascent conditions using muscle synergy analysis. Eleven older women (67.0 y ± 2.5) and ten young women (22.5 y ± 1.6) performed stepping in forward and lateral directions at step heights of 10, 20 and 30 cm. Surface electromyography was obtained from 10 lower limb and torso muscles. Non-negative matrix factorization was used to identify sets of (n) synergies across age groups and stepping conditions. In addition, variance accounted for (VAF) by the detected number of synergies was compared to assess complexity of motor control. Finally, correlation coefficients of muscle weightings and between-subject variability of the temporal activation patterns were calculated and compared between age groups and stepping conditions. Four synergies accounted for >85% VAF across age groups and stepping conditions. Age and step height showed a significant negative correlation with VAF during forward stepping but not lateral stepping, with lower VAF indicating higher synergy complexity. Muscle weightings showed higher similarity across step heights in older compared to young women. Neuromuscular control of young and community-dwelling older women could not be differentiated based on the number of synergies extracted. Additional analyses of synergy structure and complexity revealed subtle age- and step-height-related differences, indicating that older women rely on more complex neuromuscular control strategies.

Funder

European Commission

Fonds Wetenschappelijk Onderzoek

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3