Abstract
The relay reliability has an impact on the reliability of the entire electric vehicle system. This paper contributes to propose the improving fireworks algorithm optimizing the grey neural network model to predict the relay lifetime. This paper shows how the mutation operation and mapping operation in the fireworks algorithm are used to improve the convergence ability and running speed; the convergence performance and running speed of improved fireworks algorithm are tested with standard test function and compared with fireworks algorithm; and the grey neural network model–improved fireworks algorithm is used to predict the relay life and compared with grey model, grey neural network, and grey neural network model–fireworks algorithm. The results show that the convergence accuracy of the improved fireworks algorithm is better than the fireworks algorithm. The running time of improved fireworks algorithm is the shortest; the improved fireworks algorithm–grey neural network model has the best prediction effect and the root mean square error value is 6.75% smaller than the fireworks algorithm–grey neural network model.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献