Author:
Lian Xugang,Li Zoujun,Yuan Hongyan,Hu Haifeng,Cai Yinfei,Liu Xiaoyu
Abstract
Surface movement and deformation induced by underground coal mining causes slopes to collapse. Global Navigation Satellite System (GNSS) real-time monitoring can provide early warnings and prevent disasters. A stability analysis of high-steep slopes was conducted in a long wall mine in China, and a GNSS real-time monitoring system was established. The moving velocity and displacement at the monitoring points were an integrated response to the influencing factors of mining, topography, and rainfall. Underground mining provided a continuous external driving force for slope movement, the steep terrain provided sufficient slip conditions in the slope direction, and rainfall had an acceleration effect on slope movement. The non-uniform deformation, displacement field, and time series images of the slope body revealed that ground failure was concentrated in the area of non-uniform deformation. The non-uniform deformation was concentrated ahead of the working face, the speed of deformation behind the working face was reduced, the instability of the slope body was increased, and the movement of the top of the slope was larger than at the foot. The high-steep slope stability in the mine was influenced by the starting deformation (low stability), iso-accelerated deformation (increased stability), deformation deceleration (reduced stability), and deformation remaining unchanged (improved stability).
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanxi Province
Shanxi Provincial Key Research and Development Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献