Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions

Author:

Rathore Saima,Niazi Tamim,Iftikhar Muhammad Aksam,Singh Ashish,Rathore Batool,Bilello Michel,Chaddad AhmadORCID

Abstract

White matter lesions (WML) are common in a variety of brain pathologies, including ischemia affecting blood vessels deeper inside the brain’s white matter, and show an abnormal signal in T1-weighted and FLAIR images. The emergence of personalized medicine requires quantification and analysis of differential characteristics of WML across different brain regions. Manual segmentation and analysis of WMLs is laborious and time-consuming; therefore, automated methods providing robust, reproducible, and fast WML segmentation and analysis are highly desirable. In this study, we tackled the segmentation problem as a voxel-based classification problem. We developed an ensemble of different classification models, including six models of support vector machine, trained on handcrafted and transfer learning features, and five models of Residual neural network, trained on varying window sizes. The output of these models was combined through majority-voting. A series of image processing operations was applied to remove false positives in a post-processing step. Moreover, images were mapped to a standard atlas template to quantify the spatial distribution of WMLs, and a radiomic analysis of all the lesions across different brain regions was carried out. The performance of the method on multi-institutional WML Segmentation Challenge dataset (n = 150) comprising T1-weighted and FLAIR images was >90% within data of each institution, multi-institutional data pooled together, and across-institution training–testing. Forty-five percent of lesions were found in the temporal lobe of the brain, and these lesions were easier to segment (95.67%) compared to lesions in other brain regions. Lesions in different brain regions were characterized by their differential characteristics of signal strength, size/shape, heterogeneity, and texture (p < 0.001). The proposed multimodal ensemble-based segmentation of WML showed effective performance across all scanners. Further, the radiomic characteristics of WMLs of different brain regions provide an in vivo portrait of phenotypic heterogeneity in WMLs, which points to the need for precision diagnostics and personalized treatment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3