Abstract
This paper concerns the conceptual design of a carbon fibre composite airbrake intended for use on the Endeavour Darwin I rocket. The airbrake design is based on a Flasher origami model and we research its actuation mechanism, its ability to increase drag, and its mechanical behaviour when actuated. The aim of this work was to improve upon the current ‘Pancake’ airbrake model and we find that the origami Flasher generates six times more drag at a given torque. The Flasher is designed to be built of quasi-isotropic CFRP resting on a carbon fibre woven membrane. When subjected to distributed loads from drag, the Flasher presses into the membrane material causing it to stress at levels of 1.4 GPa. Taking into account a safety factor of 1.2 for the rocket airbrake, this stress lies far below the failure stress of the carbon fibre woven membrane. In this work, the composite Flasher origami airbrake design offers improvements in drag and weight reduction, and will withstand drag forces when actuated.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献