The Effect of Surface Treatments of Presintered Zirconia on Sintered Surfaces

Author:

Abdelraouf Rasha M.1ORCID,Tsujimoto Akimasa234ORCID,Hamdy Tamer M.5ORCID,Alhotan Abdulaziz6ORCID,Jurado Carlos A.7ORCID,Abadir Magdi8,Habib Nour A.1

Affiliation:

1. Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt

2. Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan

3. Department of Operative Dentistry, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA

4. Department of General Dentistry, School of Dentistry, Creighton University, Omaha, NE 68102, USA

5. Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Giza 12622, Egypt

6. Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia

7. Department of Prosthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA

8. Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

Abstract

Zirconia is a high-strength ceramic material that expands the design and application possibilities for all-ceramic restorations and dental implants. To enhance the bonding of zirconia restorations to tooth substrates and the osseointegration of implants with the surrounding bone, the surface should be modified by surface treatment. Unfortunately, the effective treatment of sintered zirconia is difficult. Surface treatment for presintered zirconia may be less difficult; thus, the effectiveness of surface treatments of presintered zirconia was investigated herein. The zirconia specimens were randomly divided into eight groups: (1) control (untreated) and seven treated groups subjected to surface treatment (s.ttt.) in the presintered stage, followed by sintering: (2) s.ttt. 1: hydrofluoric acid (HF) gel left during sintering; (3) s.ttt. 2: HF gel washed before sintering; (4) s.ttt. 3: coated with nanosilica; (5) s.ttt. 4: coated with microsilica; (6) s.ttt. 5: coat followed by airborne-particle abrasion; (7) s.ttt. 6: coat followed by partial etching; and (8) s.ttt. 7: coat followed by total etching. The surface microstructure was examined using scanning electron microscopy (SEM) and the crystalline phase was identified using X-ray diffraction (XRD). Biaxial flexural strength was also tested. The results of SEM for s.ttt. 1 and 2 displayed irregular surfaces. S.ttt. 3 showed deeper penetration of the nanosilica into zirconia (27 µm) compared to the microsilica used in s.ttt. 4. S.ttt. 5 and 6 showed irregular coats. S.ttt. 7 showed intergranular pores. The XRD of s.ttt. 1, 2, and 3 revealed tetragonal zirconia as the control group. S.ttt. 4 and 5 showed cristobalite silica and tetragonal zirconia. S.ttt. 6 and 7 contained amorphous silica and tetragonal zirconia, while s.ttt. 7 also showed monoclinic zirconia. The highest flexural strength was for s.ttt. 4 (982.4 MPa), while the lowest was for s.ttt. 7 (386.6 MPa). There was no significant difference in the flexural strength between the control, s.ttt. 1, and 2 (846.3 MPa, 830.0 MPa, and 835 MPa, respectively). Compared to the control group, s.ttt. 3 had a lower flexural strength (634.1 MPa), while s.ttt. 5 and 6 had higher flexural strengths (863.1 MPa and 872.2 MPa, respectively). It can be concluded that the surface modification of presintered zirconia is a promising method as long as no phase transformation or deep subsurface penetration occurs.

Funder

King Saud University

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3