Facile Fabrication of Absorption-Dominated Biodegradable Poly(lactic acid)/Polycaprolactone/Multi-Walled Carbon Nanotube Foams towards Electromagnetic Interference Shielding

Author:

Liu Tong12,Feng Huiyao2,Zeng Weiqiang2,Jin Chenhong2,Kuang Tairong2ORCID

Affiliation:

1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

The use of electromagnetic interference shielding materials in the mitigation of electromagnetic pollution requires a broader perspective, encompassing not only the enhancement of the overall shielding efficiency (SET), but also the distinct emphasis on the contribution of the absorption shielding efficiency within the total shielding efficiency (SEA/SET). The development of lightweight, biodegradable electromagnetic interference shielding materials with dominant absorption mechanisms is of paramount importance in reducing electromagnetic pollution and the environmental impact. This study presents a successful fabrication strategy for a poly(lactic acid)/polycaprolactone/multi-walled carbon nanotube (PCL/PLA/MWCNT) composite foam, featuring a uniform porous structure. In this approach, melt mixing is combined with particle leaching techniques to create a co-continuous phase morphology when PCL and PLA are present in equal mass ratios. The MWCNT is selectively dispersed within the PCL matrix, which facilitates the formation of a robust conductive network within this morphology. In addition, the addition of the MWCNT content reduces the size of the phase domain in the PCL/PLA/MWCNT composite, showing an adept ability to construct a compact and stable conductive network. Based on its porous architecture and continuous conductive network, the composite foam with an 80% porosity and 7 wt% MWCNT content manifests an exceptional EMI shielding performance. The SET, specific SET, and SEA/SET values achieved are 22.88 dB, 88.68 dB·cm3/g, and 85.80%, respectively. Additionally, the resulting composite foams exhibit a certain resistance to compression-induced deformations. In summary, this study introduces a practical solution that facilitates the production of absorption-dominated, lightweight, and biodegradable EMI shielding materials at scale.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3