Mode II Fatigue Delamination Growth and Healing of Bis-Maleimide Modified CFRPs by Using the Melt Electro-Writing Process Technique

Author:

Kotrotsos Athanasios1ORCID,Kostopoulos Vassilis12

Affiliation:

1. Department of Mechanical Engineering and Aeronautics, University of Patras, GR-26504 Patras, Greece

2. Foundation of Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., GR-26504 Patras, Greece

Abstract

In the current study, the interlaminar fracture toughness behavior of high-performance carbon fiber-reinforced plastics (CFRPs) modified with Bis-maleimide (BMI) resin was investigated under Mode II quasi-static and fatigue remote loading conditions. Specifically, CFRPs were locally integrated with BMI resin, either nano-modified with graphene nano-platelets (GNPs) or unmodified, using the melt electro-writing process (MEP) technique. Following the modification, two types of CFRPs were manufactured: (a) CFRPs with pure BMI resin and (b) CFRPs with GNP-modified resin. Quasi-static tests demonstrated that the interlaminar fracture toughness properties of both modified CFRPs were significantly improved compared to the unmodified/reference CFRPs. Conversely, fatigue tests were conducted under displacement control, with crack length measurement performed using a traveling microscope. Delamination length and load quantities were measured at specific cycle intervals. The results indicated that both modified CFRPs exhibited enhanced resistance to delamination under Mode II fatigue loading, with earlier crack arrest, compared against the reference CFRPs. Additionally, the CFRPs displayed low healing efficiency (H.E.) after the healing cycle was activated. Overall, this approach shows promise in improving the delamination resistance of CFRPs under Mode II.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3