Experimental and Statistical Modeling for Effect of Nozzle Diameter, Filling Pattern, and Layer Height of FDM-Printed Ceramic–Polymer Green Body on Biaxial Flexural Strength of Sintered Alumina Ceramic

Author:

Smirnov Anton1ORCID,Nikitin Nikita2ORCID,Peretyagin Pavel23ORCID,Khmyrov Roman4,Kuznetsova Ekaterina1ORCID,Solis Pinargote Nestor Washington12ORCID

Affiliation:

1. Laboratory of 3D Structural and Functional Engineering, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055, Russia

2. Spark Plasma Sintering Research Laboratory, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055, Russia

3. Scientific Department, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p.1, Moscow 127473, Russia

4. Laboratory of Innovative Additive Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055, Russia

Abstract

This paper deals with the application of statistical analysis in the study of the dependence of the flexural strength of sintered alumina (Al2O3) disks on the parameters (nozzle diameter of the printer print head, layer height, and filling pattern) of the fused deposition method (FDM) printing of ceramic–polymer filament containing 60 vol.% alumina and 40 vol.% polylactide. By means of a correlation analysis applied to the results of flexural tests, a linear relationship was found between the thickness of the printed layer and the strength of the sintered specimens. A statistically significant linear relationship was found between the geometric parameters and the weight of both printed ceramic–polymer and sintered ceramic samples, as well as the diameter of the nozzle used in the printing of the workpiece. It was found that the highest strength is achieved with a layer thickness equal to 0.4 mm, and the smallest scatter of mass values and geometric dimensions of ceramic samples is achieved using a nozzle diameter of 0.6 mm. As a result of the conducted research, linear equations allowing the prediction of changes in the geometry and mass of samples after sintering, as well as the strength properties of sintered samples, taking into account the geometry and mass of FDMed samples, were obtained.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3