3D Printing of Low-Filled Basalt PA12 and PP Filaments for Automotive Components

Author:

Lupone Federico1ORCID,Tirillò Jacopo2ORCID,Sarasini Fabrizio2ORCID,Badini Claudio1,Sergi Claudia2

Affiliation:

1. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2. Department of Chemical Engineering Materials Environment, Sapienza Università di Roma and UdR INSTM, Via Eudossiana 18, 00184 Rome, Italy

Abstract

Fused Deposition Modeling (FDM) enables many advantages compared to traditional manufacturing techniques, but the lower mechanical performance due to the higher porosity still hinders its industrial spread in key sectors like the automotive industry. PP and PA12 filaments filled with low amounts of basalt fibers were produced in the present work to improve the poor mechanical properties inherited from the additive manufacturing technique. For both matrices, the introduction of 5 wt.% of basalt fibers allows us to achieve stiffness values comparable to injection molding ones without modifying the final weight of the manufactured components. The increased filament density compared with the neat polymers, upon the introduction of basalt fibers, is counterbalanced by the intrinsic porosity of the manufacturing technique. In particular, the final components are characterized by a 0.88 g/cm3 density for PP and 1.01 g/cm3 for PA12 basalt-filled composites, which are comparable to the 0.91 g/cm3 and 1.01 g/cm3, respectively, of the related neat matrix used in injection molding. Some efforts are still needed to fill the gap of 15–28% for PP and of 26.5% for PA12 in tensile strength compared to injection-molded counterparts, but the improvement of the fiber/matrix interface by fiber surface modification or coupling agent employment could be a feasible solution.

Funder

Italian Ministry of Education, University and Research

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3