Anomaly Detection Based Latency-Aware Energy Consumption Optimization For IoT Data-Flow Services

Author:

Luo YuanshengORCID,Li WenjiaORCID,Qiu Shi

Abstract

The continuous data-flow application in the IoT integrates the functions of fog, edge, and cloud computing. Its typical paradigm is the E-Health system. Like other IoT applications, the energy consumption optimization of IoT devices in continuous data-flow applications is a challenging problem. Since the anomalous nodes in the network will cause the increase of energy consumption, it is necessary to make continuous data flows bypass these nodes as much as possible. At present, the existing research work related to the performance of continuous data-flow is often optimized from system architecture design and deployment. In this paper, a mathematical programming method is proposed for the first time to optimize the runtime performance of continuous data flow applications. A lightweight anomaly detection method is proposed to evaluate the reliability of nodes. Then the node reliability is input into the optimization algorithm to estimate the task latency. The latency-aware energy consumption optimization for continuous data-flow is modeled as a mixed integer nonlinear programming problem. A block coordinate descend-based max-flow algorithm is proposed to solve this problem. Based on the real-life datasets, the numerical simulation is carried out. The simulation results show that the proposed strategy has better performance than the benchmark strategy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Multimodel Framework for Indoor Localization Under Mobile Edge Computing Environment

2. DMCM: a Data-adaptive Mutation Clustering Method to identify cancer-related mutation clusters

3. Deploying Fog Computing in Industrial Internet of Things and Industry 4.0

4. Key Enabling Technologies for Secure and Scalable Future Fog-IoT Architecture: A Survey;Pan;arXiv,2018

5. Mobile edge computing—A key technology towards 5G;Hu;ETSI White Pap.,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3