Investigation of Fracture Behavior and Mechanism in High-Speed Precise Shearing for Metal Bars with Prefabricated Fracture-Start Kerfs

Author:

Dong Yuanzhe,Ning JinqiangORCID,Dong Peng,Ren Yujian,Zhao ShengdunORCID

Abstract

A laser-assisted high-speed shearing (LAHSS) method has been proposed for metal bars, which prefabricates equally spaced fracture-start kerfs by Nd:Yag laser to make stress concentration, and applies a high-speed load to complete fracture separation. Comparative tests were conducted for Q235, 40Cr, and 304 steel bars, and the effects of fracture-start kerfs and axial clearance were investigated on the fracture section. Moreover, the fracture behavior was demonstrated by numerical simulation, and the micro-fracture mechanism was revealed by fractographic analysis. The numerical simulation results show that the material damage concentrates along with the kerf tips with peak equivalent plastic strain, and the corresponding stress triaxiality drops to almost zero at the kerf tip, which reveals that the material is subjected to pure shearing at kerf tip; the Max. loading force is reduced by 15.2%–29.6%, and the impact energy is decreased by 29.8%–46.9% for the three types of bar material. The experimental results showed that the fracture-start kerfs effectively inhibited the plastic deformation stage, and higher precision blanks were obtained in the LAHSS test: roundness error improved from 2.7%–10.9% to 1.1%–2.6%, Max. bending deflection decreased from 1.3–3.4 mm to 0.4–1.0 mm, and flatness error dropped from 0.9–3.3 mm to 0.3–0.7 mm. The fractographic analysis reveals that the crack initiation is related to alternative V-shape micro-notches at the laser-affected zone; the predominant fracture mechanism involves mode II microvoid coalescence at the main fracture plane; smaller and less elongated dimples were formed in 40Cr steels due to higher number density of grains and pinning effect of second-phase particles compared to Q235 and 304 steel bars.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3