PCM Cement-Lime Mortars for Enhanced Energy Efficiency of Multilayered Building Enclosures under Different Climatic Conditions

Author:

Guardia CynthiaORCID,Barluenga GonzaloORCID,Palomar IreneORCID

Abstract

Phase change materials (PCMs) are promising materials for the energy efficiency improvement of building enclosures, due to their energy storage capacity. The thermal behaviour of a multi-layered building enclosure with five different compositions of PCM cement-lime mortars was evaluated under heating and cooling cycles. The behaviour of cement-lime mortars with 20% of microencapsulated PCM mixed with other additions, such as cellulose fibres and perlite, a lightweight aggregate (LWA), were studied under climate conditions of 15 °C–82% RH (cooling) and 30 °C–33% RH (heating) that were applied with a climatic chamber. Temperature and heat flux on both sides of the multi-layered enclosure were experimentally measured in laboratory tests. Temperature was also measured on both sides of the PCM cement-lime mortar layer. It was observed that the addition of the PCM cement-lime mortar layer delayed the heat flux through the enclosure. During a heating cycle, the incorporation of PCM delayed the arrival of the heat wave front by 30 min (8.1% compared to the reference mortar without PCM). The delay of the arrival of the heat wave front during the cooling cycle after adding PCM, compared to the reference mixture, reached 40.6% (130 min of delay). Furthermore, the incorporation of LWA in PCM cement-lime mortars also improved thermal insulation, further increasing energy efficiency of the building enclosure, and can be used not only for new buildings but also for energy rehabilitation of existing building enclosures.

Funder

Comunidad de Madrid

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3