Home-Based Measurements of Dystonia in Cerebral Palsy Using Smartphone-Coupled Inertial Sensor Technology and Machine Learning: A Proof-of-Concept Study

Author:

den Hartog Dylan,van der Krogt Marjolein M.,van der Burg SvenORCID,Aleo Ignazio,Gijsbers Johannes,Bonouvrié Laura A.,Harlaar JaapORCID,Buizer Annemieke I.ORCID,Haberfehlner HelgaORCID

Abstract

Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation either directly in the doctor’s office or from video recordings using standardized scales. Both methods lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens in a clinical environment. The goal of this study was to investigate whether it is feasible to use home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled inertial sensors and machine learning. Video and sensor data during both active and rest situations from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and clinically scored the dystonia of the extremities on a 0–4 scale, following the definition of amplitude of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it is possible to detected dystonia automatically using individually trained models. The predictions could complement standard dyskinetic CP measures by providing frequent, objective, real-world assessments that could enhance clinical care. A generalized model, trained with data from other subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely due to a lack of training data and dissimilarities between subjects. However, the generalized model is reasonably able to distinguish between high and lower scores. Future research should focus on gathering more high-quality data and study how the models perform over the whole day.

Funder

Netherlands Organisation for Health Research and Development

Research Foundation - Flanders

Netherlands eScience Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3