Abstract
The use of actual electricity consumption data provided the chance to detect the change of customer class types. This work could be done by using classification techniques. However, there are several challenges in computational techniques. The most important one is to efficiently handle a large number of dimensions to increase customer classification performance. In this paper, we proposed a symmetrical uncertainty based feature subset generation and ensemble learning method for the electricity customer classification. Redundant and significant feature sets are generated according to symmetrical uncertainty. After that, a classifier ensemble is built based on significant feature sets and the results are combined for the final decision. The results show that the proposed method can efficiently find useful feature subsets and improve classification performance.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献