An Automated Training of Deep Learning Networks by 3D Virtual Models for Object Recognition

Author:

Židek Kamil,Lazorík Peter,Piteľ JánORCID,Hošovský Alexander

Abstract

Small series production with a high level of variability is not suitable for full automation. So, a manual assembly process must be used, which can be improved by cooperative robots and assisted by augmented reality devices. The assisted assembly process needs reliable object recognition implementation. Currently used technologies with markers do not work reliably with objects without distinctive texture, for example, screws, nuts, and washers (single colored parts). The methodology presented in the paper introduces a new approach to object detection using deep learning networks trained remotely by 3D virtual models. Remote web application generates training input datasets from virtual 3D models. This new approach was evaluated by two different neural network models (Faster RCNN Inception v2 with SSD, MobileNet V2 with SSD). The main advantage of this approach is the very fast preparation of the 2D sample training dataset from virtual 3D models. The whole process can run in Cloud. The experiments were conducted with standard parts (nuts, screws, washers) and the recognition precision achieved was comparable with training by real samples. The learned models were tested by two different embedded devices with an Android operating system: Virtual Reality (VR) glasses, Cardboard (Samsung S7), and Augmented Reality (AR) smart glasses (Epson Moverio M350). The recognition processing delays of the learned models running in embedded devices based on an ARM processor and standard x86 processing unit were also tested for performance comparison.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Application of artificial neural network for identification of bearing stiffness characteristics in rotor dynamics analysis;Pavlenko,2019

2. Embedded vision equipment of industrial robot for inline detection of product errors by clustering–classification algorithms

3. Deffuant model of opinion formation in one-dimensional multiplex networks

4. Scientific and methodological approach for the identification of mathematical models of mechanical systems by using artificial neural networks;Pavlenko,2019

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3