A Memetic Algorithm for Solving the Robust Influence Maximization Problem on Complex Networks against Structural Failures

Author:

Huang Delin,Tan Xiaojun,Chen Nanjie,Fan Zhengping

Abstract

Many transport systems in the real world can be modeled as networked systems. Due to limited resources, only a few nodes can be selected as seeds in the system, whose role is to spread required information or control signals as widely as possible. This problem can be modeled as the influence maximization problem. Most of the existing selection strategies are based on the invariable network structure and have not touched upon the condition that the network is under structural failures. Related studies indicate that such strategies may not completely tackle complicated diffusion tasks in reality, and the robustness of the information diffusion process against perturbances is significant. To give a numerical performance criterion of seeds under structural failure, a measure has been developed to define the robust influence maximization (RIM) problem. Further, a memetic optimization algorithm (MA) which includes several problem-orientated operators to improve the search ability, termed RIMMA, has been presented to deal with the RIM problem. Experimental results on synthetic networks and real-world networks validate the effectiveness of RIMMA, its superiority over existing approaches is also shown.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3