Secondary Complementary Balancing Compressive Imaging with a Free-Space Balanced Amplified Photodetector

Author:

Yu Wen-KaiORCID,Yang Ying,Liu Jin-Rui,Wei Ning,Wang Shuo-Fei

Abstract

Single-pixel imaging (SPI) has attracted widespread attention because it generally uses a non-pixelated photodetector and a digital micromirror device (DMD) to acquire the object image. Since the modulated patterns seen from two reflection directions of the DMD are naturally complementary, one can apply complementary balanced measurements to greatly improve the measurement signal-to-noise ratio and reconstruction quality. However, the balance between two reflection arms significantly determines the quality of differential measurements. In this work, we propose and demonstrate a simple secondary complementary balancing mechanism to minimize the impact of the imbalance on the imaging system. In our SPI setup, we used a silicon free-space balanced amplified photodetector with 5 mm active diameter which could directly output the difference between two optical input signals in two reflection arms. Both simulation and experimental results have demonstrated that the use of secondary complementary balancing can result in a better cancellation of direct current components of measurements, and can acquire an image quality slightly better than that of single-arm single-pixel complementary measurement scheme (which is free from the trouble of optical imbalance) and over 20 times better than that of double-arm dual-pixel complementary measurement scheme under optical imbalance conditions.

Funder

Beijing Natural Science Foundation

Civil Space Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3