Assessing Integrated Hydrologic Model: From Benchmarking to Case Study in a Typical Arid and Semi-Arid Basin

Author:

Lu Zheng1ORCID,He Yuan1ORCID,Peng Shuyan1

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

Groundwater-surface water interactions play a crucial role in hydrologic cycles, especially in arid and semi-arid basins. There is a growing interest in developing integrated hydrologic models to describe groundwater-surface water interactions and the associated processes. In this study, an integrated process-based hydrologic model, ParFlow, was tested and utilized to quantify the hydrologic responses, such as changes in surface runoff and surface/subsurface storage. We progressively conducted a complexity-increasing series of benchmarking cases to assess the performance of ParFlow in simulating overland flow and integrated groundwater-surface water exchange. Meanwhile, the overall performance and the computational efficiency were quantitatively assessed using modified Taylor diagrams. Based on the benchmarking cases, two case studies in the Heihe River Basin were performed for further validation and to diagnose the hydrologic responses under disturbance, named the Bajajihu (BJH) and Dayekou (DYK) cases, respectively. Both cases were 2D transects configured with in-situ measurements in the mid- and downstream of the Heihe River Basin. In the BJH case, simulated soil moisture by ParFlow was shown to be comparable with in-situ observations in general, with Pearson’s correlation coefficient (R) > 0.93 and root mean square difference (RMSD) < 0.007. In the DYK case, seven scenarios driven by remote sensing and reanalysis data were utilized to study hydrological responses influenced by natural physical processes (i.e., precipitation) and groundwater exploitations (i.e., pumping) that are critical to surface and subsurface storage. Results show that subsurface storage is sensitive to groundwater exploitation before an obvious stationary point. Moreover, a correlation analysis was additionally provided demonstrating the impacts of different factors on subsurface storage timeseries. It was found that pumping influences subsurface storage remarkably, especially under short-term but large-volume pumping rates. The study is expected to provide a powerful tool and insightful guidance in understanding hydrological processes’ effects in arid and semi-arid basins.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3