Spatiotemporal Dynamics of Ecosystem Services Driven by Human Modification over the Past Seven Decades: A Case Study of Sihu Agricultural Watershed, China

Author:

Lin Haowen1,Yun Hong2

Affiliation:

1. College of Urban and Environment Sciences, Peking University, Beijing 100871, China

2. School of Design, South China University of Technology, Guangzhou 511436, China

Abstract

Understanding the effects of human modification on ecosystem services is critical for effectively managing multiple services and achieving long-term sustainability. The historical dynamics of ecosystem services are important for detecting the impacts before and after intensive modification and deserve further study. To this end, we quantified the spatiotemporal dynamics of 11 ecosystem services across the Sihu agricultural watershed in 1954, 1983, 2001, and 2018. We used the Spearman coefficient, self-organized maps clustering, and redundancy analysis to explore the spatial patterns and potential modification drivers of temporal variations of ecosystem service provision. The results revealed the following: (1) The spatial correlations among ecosystem services in a single year were inconsistent with the ecosystem service change associations during two-time steps. The snapshot correlations at one time led to misunderstandings (such as water yield and runoff control or soil carbon sequestration, and habitat quality changed direction from synergy to trade-off) and missed synergies (such as water purification and recreational potential); (2) Most ecosystem services could be synergetic in one bundle with multifunctionality before intensive modification, but later transformed to single or limited services dominated bundles, especially in lake-polder areas; (3) Lake reclamation and hydraulic infrastructure were the most significant modification indicators explaining the variation of ecosystem services (30.9% of variance explained by lake reclamation in 1954, 38.2% of variance explained by hydraulic infrastructure in 2018). Meanwhile, changes in dominant drivers also indicated the transition from lake-based ecosystem service supply to engineered service. An improved understanding of the spatiotemporal pattern of ecosystem services and the underlying human modification influence is vital for realizing the sustainability and multifunctionality of agricultural watershed.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference105 articles.

1. Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being, Island Press.

2. Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment;Gunderson;Annu. Rev. Mar. Sci.,2016

3. Cisneros, B.E.J., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Doll, P., Jiang, T., and Mwakalila, S.S. (2014). Freshwater Resources, Cambridge University Press.

4. Solutions for a cultivated planet;Foley;Nature,2011

5. Forecasting Agriculturally Driven Global Environmental Change;Tilman;Science,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3