Synthesis, Characterization and Photocatalytic Activity of N-doped Cu2O/ZnO Nanocomposite on Degradation of Methyl Red

Author:

Gaim ,Tesfamariam ,Nigussie ,Ashebir

Abstract

In this study, a N-doped Cu2O/ZnO nanocomposite was prepared by a co-precipitation and thermal decomposition technique from CuCl2, 2H2O, ZnSO4, 7H2O and CO(NH2)2 as precursors. The as-synthesized nanocomposites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared analysis (FT–IR) and an ultraviolet–visible (UV–Vis) reflectance spectrometer. From the XRD diffractogram of N-doped Cu2O/ZnO nanocomposite, cubic and hexagonal wurtzite crystal structures of Cu2O, and ZnO, respectively were identified. The UV-vis reflectance spectra illustrated that the absorption edge of N-doped Cu2O/ZnO nanocomposite is more extended to the longer wavelength than ZnO, Cu2O and Cu2O/ZnO nanomaterials. FT–IR bands confirmed the presence of ZnO, Cu2O, and nitrogen in the N-doped Cu2O/ZnO nanocomposite. Photocatalytic activity of the as-synthesized nanocomposite was tested for methyl red degradation using sunlight as an energy source by optimizing the concentration of the dye and amount of the catalyst loaded. The degradation efficiency was greater in N-doped Cu2O/ZnO nanocomposite as compared to ZnO, Cu2O and Cu2O/ZnO nanomaterials. This is due to the coupling of the semiconductors which increases the absorption and exploitation capability of solar light and increases the charge separation as well. Besides that, nitrogen doping can extend absorption of light to the visible region by decreasing the energy gap. Therefore, N-doped Cu2O/ZnO nanocomposite is a solar light-active photocatalyst which can be used in the degradation of organic pollutants.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3