Abstract
Powdered cellulose-reinforced (20 wt%) polypropylene composites were prepared by melt compounding and subsequent injection moldings. We assessed the effect of cellulose reducing ends on the capacity of powdered cellulose to reinforce polypropylene composites after seven days exposure to air circulation during the conditioning of samples. Tensile tests on the composites were performed at 5.08 mm/min. Fourier transform infrared spectroscopy revealed some changes that occurred within the composites by demonstrating a practical decrease in –C=O (1744 cm−1) absorption band intensity. A thermogravimetric analysis indicated differences within the thermal behavior of the prepared composites, showing a higher onset of degradation. Scanning electron microscopy of the fracture areas, together with load–extension curves, further characterized the development of interfacial cellulose/matrix adhesion as well as the brittle and ductile behavior of the composites. The results indicate that the thermal and tensile properties of powdered cellulose/polypropylene are improved by decreasing the amount of cellulose reducing ends in the system.
Reference42 articles.
1. A comparison study of lignocellulosic-thermoplastic composites prepared from different compounding techniques
2. Processing Into Composites;English,1997
3. Polypropylene as a Promising Plastic: A Review;Maddah;Am. J. Polym. Sci.,2016
4. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications
5. Lightweight and Sustainable Materials for Automotive Applications;Faruk,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献