Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks

Author:

Alam Amjad1ORCID,Shah Purav1ORCID,Trestian Ramona1,Ali Kamran1ORCID,Mapp Glenford1

Affiliation:

1. Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK

Abstract

With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial computational operations for tasks such as path planning, scene recognition, and vision-based object detection. Managing these intensive computational applications is concerned with significant energy consumption. Hence, for this article, a low-cost and sustainable solution using computational offloading and efficient resource allocation at edge devices within the Internet of Vehicles (IoV) framework has been utilised. To address the quality of service (QoS) among vehicles, a trade-off between energy consumption and computational time has been taken into consideration while deciding on the offloading process and resource allocation. The offloading process has been assigned at a minimum wireless resource block level to adapt to the beyond 5G (B5G) network. The novel approach of joint optimisation of computational resources and task offloading decisions uses the meta-heuristic particle swarm optimisation (PSO) algorithm and decision analysis (DA) to find the near-optimal solution. Subsequently, a comparison is made with other proposed algorithms, namely CTORA, CODO, and Heuristics, in terms of computational efficiency and latency. The performance analysis reveals that the numerical results outperform existing algorithms, demonstrating an 8% and a 5% increase in energy efficiency.

Funder

UKIERI-SPARC project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3