Numerical Study on Seismic Response of Steel Storage Racks with Roller Type Isolator

Author:

Álvarez OscarORCID,Maureira NelsonORCID,Nuñez EduardoORCID,Sanhueza Frank,Roco-Videla ÁngelORCID

Abstract

This research evaluates the effectiveness of using a roller-type base isolation device with tensile strength in reducing the dynamic response of industrial steel storage racks. These were subjected to a seismic input acting separately in both directions of the structure. The seismic record obtained from the earthquake that occurred in Llolleo, Chile, on 3 March 1985, was used as input. This earthquake was scaled in the frequency domain, adjusting its response spectrum to coincide with the design spectrum required by NCh2745. In the calculations of this spectrum, the most hazardous seismic zone (zone 3) and soft soil (soil III) that amplifies the effect of the low frequencies of the earthquake were considered. These frequencies are the ones that have the most affect on flexible structures such as high racks and systems with base isolation. Numerical time-history analyses were performed in fixed base racks and base isolation racks. In both cases, the models include semi-rigid connections with capacity for plastic deformation and energy dissipation. Parametric analyses were carried out considering the most relevant variables, using an algorithm programmed in MATLAB software. The maximum relative displacement, maximum basal shear load, and maximum absolute floor acceleration were considered as responses of interest. The results showed the effectiveness of using the base isolation device by reducing the absolute accelerations between approximately 75% and 90%, compared to the same fixed rack at its base. This makes it possible to reduce the vulnerability of the stored load to overturn under the action of a severe earthquake.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3