Abstract
The relation among microstructure and fatigue behavior of 2205/316L stainless steel dissimilar welded joints was investigated. Plates of 6.35 mm in thickness with a single-V joint configuration were gas metal arc welded (GMAW) in a single pass by feeding at 6 m/min an ER2209 filler wire with a heat input of 1.2 kJ/mm. Grain growth in the high temperature-heat affected zone (HT-HAZ) occurred mostly at the mid-height of the plates, delimiting the width of this region up to ~1.28 and ~0.73 mm of the 2205 and 316L plates, respectively. Dilution of the 316L plate with the ER2209 filler altered the solidification mode in this side of the weld and led to a significant content of austenite along the fusion line. Fatigue tests were performed using sinusoidal waveform at room temperature applying uniaxial cyclic loading, between constant stress limits within the elastic deformation of tension and compression (Δσ) with stress ratio R = −0.3. With stress ranges of 98% and 95% the fatigue specimens rapidly failed in much less than 106 cycles. The failure crack initiated at the surface of the 316L in the HT-HAZ near the weld toe. Surface analyses of unbroken specimens before and after fatigue testing revealed a significant increment in roughness of the 316L base material owing to the formation of intrusions and extrusions.
Subject
General Materials Science,Metals and Alloys
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献