Abstract
This study establishes a vertical–horizontal coupling vibration model of hot rolling mill rolls under multi-piecewise nonlinear constraints considering the piecewise nonlinear spring force and piecewise nonlinear friction force constraints of the hydraulic cylinder in the vertical direction of the rolls, the piecewise stiffness constraints in the horizontal direction, and the influence of the nonlinear dynamic rolling force in the rolling process. Using the average method to solve the amplitude–frequency response equation of the coupled vibration system and taking the actual parameters of a 1780 mm hot rolling mill (Chengde Steel Co., Ltd., Chengde, China) as an example, we study the amplitude–frequency characteristics of the mill rolls under different parameter settings. The results show that the amplitude and resonance region can be reduced by appropriately reducing the external disturbance force and the nonlinear spring force of the hydraulic cylinder, appropriately increasing the nonlinear friction force, and eliminating the gap between the bearing seat and the mill housing, to avoid the amplitude jump phenomenon due to piecewise variation. Furthermore, using the singularity theory to study the static bifurcation characteristics of the coupled vibration system, we establish a relationship between the vibration parameters and the topological bifurcation solution of the coupled system. The transition sets and their corresponding bifurcation topological structure in three cases are given, and the steady and unsteady process parameter regions of the rolls are obtained. The dynamic behavior of the coupled vibration system can be controlled by varying the bifurcation parameter. This study provides a theoretical basis for restraining the vibration of hot rolling mill rolls and optimizing the process parameters.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
General Materials Science,Metals and Alloys
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献