Effect of Tool Coating and Cutting Parameters on Surface Roughness and Burr Formation during Micromilling of Inconel 718

Author:

Muhammad AtifORCID,Kumar Gupta MunishORCID,Mikołajczyk TadeuszORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID

Abstract

Surface roughness and burr formation are among the most important surface quality metrics which determine the quality of the fabricated parts. High precision machined microparts with complex features require micromachining process to achieve the desired yet stringent surface finish and dimensional accuracy. In this research, the effect of cutting speed (m/min), feed rate (µm/tooth), depth of cut (µm) and three types of tool coating (AlTiN, nACo and TiSiN) were analyzed to study their effect on surface roughness and burr formation during the micromachining of Inconel 718. The analysis was carried out using an optical profilometer, scanning electron microscope and statistical technique. Machining tests were performed at low speed with a feed rate (µm/tooth) below the cutting-edge radius for 10 mm cutting length using a carbide tool of 0.5 mm diameter on a CNC milling machine. From this research, it was determined that the depth of cut was the main factor affecting burr formation, while cutting velocity was the main factor affecting the surface roughness. In addition, cutting tool coating did not significantly affect either surface roughness or burr formation due to the difference in coefficient of friction. The types of burr formed during micromilling of Inconel 718 were mainly influenced by the depth of cut and feed rate (µm/tooth) and were not affected by the cutting velocity. It was also concluded that the results for the surface finish at low-speed machining are comparable to that of transition and high-speed machining, while the burr width found during confirmation experiments at low-speed machining was also within an acceptable range.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3