Selective Recovery of Copper from Industrial Sludge by Integrated Sulfuric Leaching and Electrodeposition

Author:

Trinh Ha Bich,Lee JaeryeongORCID,Kim Seunghyun,Lee Jae-chunORCID,Aceituno Juan Carlos Fuentes,Oh Seokhoon

Abstract

The metal-containing sludge generated from the printed circuit boards (PCBs) manufacturing has been recycled as a secondary resource of copper (Cu) rather than being treated as a hazardous solid waste. However, it should consider the complexity of processing and using of oxidizing or precipitation agents to dissolve and separate Cu from other impurities, especially iron (Fe). This study has combined the dissolution and separation step in one stage by integrated acid leaching and electrodeposition to simplify the recovery process, while maintaining the high efficiency of separation. The chemistry of acid leaching and electrodeposition of the metals demonstrated that the metals (Cu and Fe) in the sludge sample were dissolved in the H2SO4 electrolyte, and Cu could be selectively deposited on the cathode based on the different potential conditions to reduce it on the cathode. The important factors affecting the deposition of Cu were investigated, finding the optimal conditions (current density 15 mA/cm2, H2SO4 100 g/L, Cu 20 g/L, at 45 °C, and for 6 h) which could completely recover Cu from the electrolyte in a selective manner. The obtained copper product possessed a high purity of >99% with adequately uniform morphology and an acceptable consumption of energy (1.7 kWh/kg). It is an effective and simple approach to reclaim the value metal copper from the industrial waste in one single stage of integrated extraction and refining.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3