Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded AA2024-T4/AA7075-T6 T-Butt Joints

Author:

Ahmed Mohamed M.Z.ORCID,El-Sayed Seleman Mohamed M.,Zidan Zeinab A.,Ramadan Rashad M.,Ataya SabbahORCID,Alsaleh Naser A.

Abstract

Aircraft skin and stringer elements are typically fabricated from 2xxx and 7xxx series high strength aluminum alloys. A single friction stir welding (FSW) pass using a specially designed tool with shoulder/pin diameter ratio (D/d) of 3.20 is used to produce dissimilar T-butt welds between AA2024-T4 and AA7075-T6 aluminum alloys at a constant travel speed of 50 mm/min and different rotational speeds of 400, 600 and 800 rpm. The AA2024-T4 is the skin and the AA7075-T6 is the stringer. Sound joints are produced without macro defects in both the weld top surfaces and the joint corners at all rotational speeds used (400, 600, and 800 rpm). The hardness value of the nugget zone increases by increasing the rotational speed from 150 ± 4 Hv at 400 rpm to 167 ± 3 Hv at 600 rpm, while decreases to reach the as-received AA2024-T4 hardness value (132 ± 3 Hv) at 800 rpm. Joint efficiency along the skin exhibits higher values than that along the stringer. Four morphologies of precipitates were detected in the stir zone (SZ); irregular, almost-spherical, spherical and rod-like. Investigations by electron back scattered diffraction (EBSD) technique showed significant grain refinement in the sir zone of the T-welds compared with the as-received aluminum alloys at 600 rpm due to dynamic recrystallization. The grain size reduction percentages reach 85 and 90 % for AA2024 and AA7075 regions in the mixed zone, respectively. Fracture surfaces along the skin and stringer of T-welds indicate that the joints failed through mixed modes of fracture.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3