Abstract
Microstructural optimization of Al-Li alloys plays a key role in the adjustment of mechanical properties as well as corrosion behavior. In this work, Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloy was homogenized at different temperatures and holding times, followed by aging treatment. The microstructure and composition of the homogenized alloys and aged alloys were investigated. There were Al7Cu4Li phase, Al3Li phase, and Al2CuLi phases in the homogenized alloys. The Al7Cu4Li phase was dissolved with an increase in homogenization temperature and holding time. Al2Cu phase and Al2CuLi phase coarsened during the homogenization process. The alloy homogenized at 515 °C for 20 h was subjected to a two-stage aging treatment. Peak-age alloy, which had gone through age treatment at 120 °C for 4 h and 180 °C for 6 h, was mainly composed of α-Al, Al20Cu2Mn3, Al2CuLi, Al2Cu, and Al3Li phases. Tafel polarization of the peak-age alloys revealed the corrosion potential and corrosion current density to be −779 mV and 2.979 μA/cm2, respectively. The over-age alloy had a more positive corrosion potential of −658 mV but presented a higher corrosion current of 6.929 μA/cm2.
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献