Study of Postural Stability Features by Using Kinect Depth Sensors to Assess Body Joint Coordination Patterns

Author:

Liu Chin-HsuanORCID,Lee Posen,Chen Yen-LinORCID,Yen Chen-Wen,Yu Chao-Wei

Abstract

A stable posture requires the coordination of multiple joints of the body. This coordination of the multiple joints of the human body to maintain a stable posture is a subject of research. The number of degrees of freedom (DOFs) of the human motor system is considerably larger than the DOFs required for posture balance. The manner of managing this redundancy by the central nervous system remains unclear. To understand this phenomenon, in this study, three local inter-joint coordination pattern (IJCP) features were introduced to characterize the strength, changing velocity, and complexity of the inter-joint couplings by computing the correlation coefficients between joint velocity signal pairs. In addition, for quantifying the complexity of IJCPs from a global perspective, another set of IJCP features was introduced by performing principal component analysis on all joint velocity signals. A Microsoft Kinect depth sensor was used to acquire the motion of 15 joints of the body. The efficacy of the proposed features was tested using the captured motions of two age groups (18–24 and 65–73 years) when standing still. With regard to the redundant DOFs of the joints of the body, the experimental results suggested that an inter-joint coordination strategy intermediate to that of the two extreme coordination modes of total joint dependence and independence is used by the body. In addition, comparative statistical results of the proposed features proved that aging increases the coupling strength, decreases the changing velocity, and reduces the complexity of the IJCPs. These results also suggested that with aging, the balance strategy tends to be more joint dependent. Because of the simplicity of the proposed features and the affordability of the easy-to-use Kinect depth sensor, such an assembly can be used to collect large amounts of data to explore the potential of the proposed features in assessing the performance of the human balance control system.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. Understanding Balance: The Mechanics of Posture and Locomotion;Roberts,1995

2. Towards a more balanced understanding of motor control systems;Dittrich;Psycoloquy,1996

3. What is balance?

4. THE RELATIONSHIP OF POSTURAL SWAY IN STANDING TO THE INCIDENCE OF FALLS IN GERIATRIC SUBJECTS

5. Clinical and Biomechanical Measures of Balance Fall Predictors in Ambulatory Nursing Home Residents

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3