Challenges in Drug Discovery for Intracellular Bacteria

Author:

Tucker Allison N.,Carlson Travis J.ORCID,Sarkar Aurijit

Abstract

Novel drugs are needed to treat a variety of persistent diseases caused by intracellular bacterial pathogens. Virulence pathways enable many functions required for the survival of these pathogens, including invasion, nutrient acquisition, and immune evasion. Inhibition of virulence pathways is an established route for drug discovery; however, many challenges remain. Here, we propose the biggest problems that must be solved to advance the field meaningfully. While it is established that we do not yet understand the nature of chemicals capable of permeating into the bacterial cell, this problem is compounded when targeting intracellular bacteria because we are limited to only those chemicals that can permeate through both human and bacterial outer envelopes. Unfortunately, many chemicals that permeate through the outer layers of mammalian cells fail to penetrate the bacterial cytoplasm. Another challenge is the lack of publicly available information on virulence factors. It is virtually impossible to know which virulence factors are clinically relevant and have broad cross-species and cross-strain distribution. In other words, we have yet to identify the best drug targets. Yes, standard genomics databases have much of the information necessary for short-term studies, but the connections with patient outcomes are yet to be established. Without comprehensive data on matters such as these, it is difficult to devise broad-spectrum, effective anti-virulence agents. Furthermore, anti-virulence drug discovery is hindered by the current state of technologies available for experimental investigation. Antimicrobial drug discovery was greatly advanced by the establishment and standardization of broth microdilution assays to measure the effectiveness of antimicrobials. However, the currently available models used for anti-virulence drug discovery are too broad, as they must address varied phenotypes, and too expensive to be generally adopted by many research groups. Therefore, we believe drug discovery against intracellular bacterial pathogens can be advanced significantly by overcoming the above hurdles.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference97 articles.

1. The Top 10 Causes of Deathhttps://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

2. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016

3. Tuberculosis recurrence and its associated risk factors among successfully treated patients

4. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipelinehttps://www.who.int/publications/i/item/9789240000193

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3