Potassium Phosphonate Induces Resistance in Sweet Chestnut against Ink Disease Caused by Phytophthora Species

Author:

Brandano Andrea1ORCID,Serra Salvatorica1,Hardy Giles E. St. J.2ORCID,Scanu Bruno13ORCID

Affiliation:

1. Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy

2. Phytophthora Science and Management, Centre for Climate Impacted Terrestrial Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia

3. National Biodiversity Future Center S.c.a.r.l. (NBFC), Palazzo Steri, Piazza Marina 61, 90133 Palermo, Italy

Abstract

Ink disease, caused by Phytophthora spp., represents a serious threat to sweet chestnuts throughout their distribution area. Among the control strategies, new perspectives have been offered by using potassium phosphonate, which indirectly controls Phytophthora diseases by acting on both host physiology and host-pathogen interactions. In this study, we tested in planta the effectiveness of trunk injection with K-phosphonate against seven different Phytophthora species associated with ink disease. For the two most aggressive species, P. cinnamomi and P. ×cambivora, the treatments were repeated at two different environmental conditions (a mean temperature of 14.5 °C vs. 25 °C) and tree phenology stages. The results obtained in this study demonstrated that K-phosphonate could contain the development of Phytophthora infection in phloem tissues. However, its effectiveness varied based on the concentration applied and the Phytophthora species tested. A concentration of 280 g/L of K-phosphonate was the most effective, and in some cases, callus formation around the necrotic lesion was detected. Overall, this study broadens the knowledge of endotherapic treatments with K-phosphonate as an effective measure for managing chestnut ink disease. Interestingly, the increase in mean temperature had a positive impact on the development of P. cinnamomi lesions on chestnut phloem tissues.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3