Multilocus Sequence Analysis of Selected Housekeeping- and Pathogenicity-Related Genes in Venturia inaequalis

Author:

Michalecka MonikaORCID,Puławska JoannaORCID

Abstract

The relationship between housekeeping and pathogenicity-related genes and virulence or avirulence towards the primary Malus resistance genes (R) has not been previously studied for Venturia inaequalis fungus, the causal agent of apple scab. In this study, the sequences of two housekeeping genes encoding elongation factor alpha (EF-1α) and β-tubulin and two previously unstudied effector genes of V. inaequalis from mannosidase and glucosidase families of 100 strains collected from apple cultivars with Rvi6, Rvi1, and Rvi17 and without known scab resistance genes were submitted to the analyses. Based on the phylogenetic and diversity data, as well as recombination analyses of the sequenced regions, we assessed the phylogenetic relationships and genetic structure of the pathogen within the species and the evolutionary forces that are currently acting upon this microorganism. The topology of the obtained phylograms demonstrates the lack of a relationship between the phylogenetic position of the strain and the host cultivar and the geographical origin or race of the strain. The isolates from different hosts were differentiated but did not form diagnosable, distinct phylogenetic groups. These results suggest that the analyzed genes may be too conserved to reflect the adaptation of pathogens to apple genotypes with different R genes; thus, they do not adequately reflect race discrimination. In contrast, based on variation and gene flow estimation, genetic divergence was observed among strains virulent to apple trees containing Rvi6. The results of this study confirmed a lack of free recombination between strains and demonstrated that the analyzed regions are in linkage disequilibrium and contain non-random polymorphisms associated with the strain.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3