Chromosome-Level Assemblies for the Pine Pitch Canker Pathogen Fusarium circinatum

Author:

De Vos Lieschen1ORCID,van der Nest Magriet A.2,Santana Quentin C.3,van Wyk Stephanie4,Leeuwendaal Kyle S.1,Wingfield Brenda D.1ORCID,Steenkamp Emma T.1

Affiliation:

1. Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria (UP), Pretoria 0002, South Africa

2. Hans Merensky Chair in Avocado Research, Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute FABI, University of Pretoria, Pretoria 0002, South Africa

3. Biotechnology Platform, Agricultural Research Council, 100 Old Soutpan Road, Onderstepoort, Pretoria 0010, South Africa

4. Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Mitigating Antimalarial Resistance Consortium in South-East Africa (MARC SEA), Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town 7925, South Africa

Abstract

The pine pitch canker pathogen, Fusarium circinatum, is globally regarded as one of the most important threats to commercial pine-based forestry. Although genome sequences of this fungus are available, these remain highly fragmented or structurally ill-defined. Our overall goal was to provide high-quality assemblies for two notable strains of F. circinatum, and to characterize these in terms of coding content, repetitiveness and the position of telomeres and centromeres. For this purpose, we used Oxford Nanopore Technologies MinION long-read sequences, as well as Illumina short sequence reads. By leveraging the genomic synteny inherent to F. circinatum and its close relatives, these sequence reads were assembled to chromosome level, where contiguous sequences mostly spanned from telomere to telomere. Comparative analyses unveiled remarkable variability in the twelfth and smallest chromosome, which is known to be dispensable. It presented a striking length polymorphism, with one strain lacking substantial portions from the chromosome’s distal and proximal regions. These regions, characterized by a lower gene density, G+C content and an increased prevalence of repetitive elements, contrast starkly with the syntenic segments of the chromosome, as well as with the core chromosomes. We propose that these unusual regions might have arisen or expanded due to the presence of transposable elements. A comparison of the overall chromosome structure revealed that centromeric elements often underpin intrachromosomal differences between F. circinatum strains, especially at chromosomal breakpoints. This suggests a potential role for centromeres in shaping the chromosomal architecture of F. circinatum and its relatives. The publicly available genome data generated here, together with the detailed metadata provided, represent essential resources for future studies of this important plant pathogen.

Funder

Science and Innovation

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3