Biophysical Manipulation of the Extracellular Environment by Eurotium halophilicum

Author:

Micheluz AnnaORCID,Pinzari FlaviaORCID,Rivera-Valentín Edgard G.ORCID,Manente Sabrina,Hallsworth John E.ORCID

Abstract

Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth’s biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and—under some conditions—down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3