Morphogenesis Dynamics in Leishmania Differentiation

Author:

Dandugudumula Ramu,Fischer-Weinberger Renana,Zilberstein DanORCID

Abstract

Leishmania, the causative agent of leishmaniasis, is an obligatory intracellular parasite that cycles between phagolysosome of mammalian macrophages, where it resides as round intracellular amastigotes, and the midgut of female sandflies, where it resides as extracellular elongated promastigotes. This protozoan parasite cytoskeleton is composed of stable and abundant subpellicular microtubules (SPMT). This study aims to determine the kinetics of developmental morphogenesis and assess whether microtubules remodelling is involved in this process. Using image-streaming technology, we observed that rounding of promastigotes during differentiation into amastigotes was initiated promptly after exposure to the differentiation signal. Stabilizing microtubules with taxol sped rounding, but later killed differentiating parasites if taxol was not removed. Microtubule destabilizers such as vinblastine had no effect on the rate of rounding, nor on the viability of differentiating parasites. In the reverse process, elongation is initiated after a delay of 7.5 and completed 72 h after exposure to the amastigote to the promastigote differentiation signal. During the delay, parasites became highly sensitive to treatment with microtubule destabilizers. The addition of vinblastine during the first 7.5 h halted differentiation and killed parasites. Between 8 and 24 h, parasites gradually became resistant to vinblastine and, in parallel, started to elongate. In contrast, taxol had no effect on parasite elongation, nor on the viability of these cells. In a parallel study, we showed that the Leishmania-specific protein kinase A (PKA) holoenzyme containing the LdPKAR3-C3 complex is essential for promastigote elongation. Mutant promastigotes lacking either of these proteins are round, but maintain their flagella. Here, we observed that during differentiation into amastigotes, these mutants round at the same rate as the wild type, but never exceed the WT density of round amastigotes. In the reverse process, these mutants undergo the same initial delay and then elongate at the same rate as the WT. They stop elongating when they reach 20% of elongated cells in mature promastigotes. Our analysis indicates that while promastigote rounding into amastigotes did not require microtubule remodelling, morphogenesis of round amastigotes into elongated promastigotes required microtubule rearrangement before elongation was initiated. This is the first study that investigates the dynamics of microtubules during parasite development.

Funder

Israel Science Foundation

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3