Genetic Characterization of Chikungunya Virus in Field-Caught Aedes aegypti Mosquitoes Collected during the Recent Outbreaks in 2019, Thailand

Author:

Intayot ,Phumee ,Boonserm ,Sor-suwan ,Buathong ,Wacharapluesadee ,Brownell ,Poovorawan ,Siriyasatien

Abstract

Chikungunya virus (CHIKV) is a mosquito-borne virus belonging to the genus Alphavirus. The virus is transmitted to humans by the bite of infected female Aedes mosquitoes, primarily Aedes aegypti. CHIKV infection is spreading worldwide, and it periodically sparks new outbreaks. There are no specific drugs or effective vaccines against CHIKV. The interruption of pathogen transmission by mosquito control provides the only effective approach to the control of CHIKV infection. Many studies have shown that CHIKV can be transmitted among the Ae. aegypti through vertical transmission. The previous chikungunya fever outbreaks in Thailand during 2008–2009 were caused by CHIKV, the East/Central/South African (ECSA) genotype. Recently, there have been 3794 chikungunya cases in 27 provinces reported by the Bureau of Epidemiology of Health Ministry, Thailand during 1 January–16 June 2019; however, the cause of the re-emergence of CHIKV outbreaks is uncertain. Therefore, the aims of this study were to detect and analyze the genetic diversity of CHIKV infection in field-caught mosquitoes. Both female and male Ae. aegypti were collected from endemic areas of Thailand, and CHIKV detection was done by using E1-nested RT-PCR and sequencing analysis. A total of 1646 Ae. aegypti samples (900 females and 746 males) were tested. CHIKV was detected in 54 (3.28%) and 14 samples (0.85%) in female and male mosquitoes, respectively. Seventeen samples of female Ae. aegypti collected from the Ubon Ratchathani, Chiang Rai, Chiang Mai, Nakhon Sawan, and Songkhla provinces found mutation at E1: A226V. Interestingly, E1: K211E mutation was observed in 50 samples collected from Nong Khai, Bangkok, Prachuap Khiri Khan, and Krabi. In addition, the phylogenetic tree indicated that CHIKV in Ae. aegypti samples were from the Indian Ocean Clade and East/South African Clade. Both clades belong to the ECSA genotype. The information obtained from this study could be used for prediction, epidemiological study, prevention, and effective vector control of CHIKV. For instance, a novel CHIKV strain found in new areas has the potential to lead to a new outbreak. Health authorities could plan and apply control strategies more effectively given the tools provided by this research.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference47 articles.

1. Chikungunya fever: A re-emerging viral infection

2. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling

3. Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus

4. Chikungunya: an overview

5. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus skuse (Diptera: Culicidae);Thavara;Southeast Asian J. Trop. Med. Public Health,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3