Biological Control of Verticillium Wilt and Growth Promotion in Tomato by Rhizospheric Soil-Derived Bacillus amyloliquefaciens Oj-2.16

Author:

Pei Dongli,Zhang Qingchen,Zhu Xiaoqin,Zhang Lei

Abstract

Verticillium wilt disease caused by Verticillium dahliae seriously affects tomato quality and yield. In this work, strain Oj-2.16 was isolated from rhizosphere soil of the medicinal plant Ophiopogon japonicas and identified as Bacillus amyloliquefaciens on the basis of morphological, physiological, and biochemical characteristics and 16S rDNA sequencing. Strain Oj-2.16 exhibited a high inhibition rate against V. dahliae, and the hyphae inhibited by Oj-2.16 were found to be destroyed on scanning electron microscopy. Lipopeptide and dipeptide genes were detected in the Oj-2.16 genome by PCR amplification involved in surfactin, iturin, fengycin, and bacilysin biosynthesis. In pot experiments, the biocontrol efficacy of strain Oj-2.16 against Verticillium wilt in tomato was 89.26%, which was slightly higher than the efficacy of the chemical fungicide carbendazim. Strain Oj-2.16 can produce indole acetic acid, siderophores, assimilate various carbon sources, and significantly promoted the growth of tomato seedlings by increasing plant height, root length, stem width, fresh weight, and dry weight by 44.44%, 122.22%, 80.19%, 57.65%, 64.00%, respectively. Furthermore, defense-related antioxidant CAT, SOD, POD, and PAL enzyme activities significantly increased and MDA contents significantly decreased in tomato seedlings treated with strain Oj-2.16 upon inoculation of V. dahliae compared with the pathogen-inoculated control. In summary, we concluded that B. amyloliquefaciens Oj-2.16 could be used as a promising candidate for the biocontrol of Verticillium wilt and as plant growth stimulator of tomato.

Funder

Henan Province programs for Science and Technology Development

Key Scientific Research Project for Higher Education of Henan Province

the National Natural Science Foundation of China

the Program for Science & Technology Innovative Research Team in University of Henan Province

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3