Analysis of Hop Stunt Viroid Diversity in Grapevine (Vitis vinifera L.) in Slovakia: Coexistence of Two Particular Genetic Groups

Author:

Alaxin Peter12ORCID,Predajňa Lukáš1ORCID,Achs Adam13ORCID,Šubr Zdeno1ORCID,Mrkvová Michaela2ORCID,Glasa Miroslav12ORCID

Affiliation:

1. Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia

2. Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie J. Herdu 2, 917 01 Trnava, Slovakia

3. Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia

Abstract

The hop stunt viroid (HSVd) is a widespread subviral pathogen infecting a broad spectrum of plant hosts including grapevine (Vitis vinifera L.). Despite its omnipresence in virtually all grapevine growing areas around the world, molecular data characterizing HSVd populations are missing from Slovakia. Analysis of the complete nucleotide sequences of 19 grapevine variants revealed the existence of two genetic HSVd groups in Slovakia (internally named the “6A” and “7A” groups based on the particular stretch of adenines at nucleotide positions 39–44/45, respectively). Despite their sampling at different times in various unrelated vineyards, the 6A and 7A groups are characterized by low intra-group divergence (~0.3 and 0.2%, respectively). On the other hand, inter-group divergence reached 2.2% due to several mutations, seven of which were found to be group-specific and mainly (except for one) located in the region of the pathogenic domain. Interestingly, in addition to their frequent co-existence within the same geographical location, the mixed infection of the 6A and 7A type sequence variants was also unequivocally and repeatedly proven within single grapevine plants. The RNA secondary structure analysis of representative isolates from each of these two genetic groups indicated a potential compensatory explanation of such mutations. These group-specific sites could be pointing towards the evolutionary selection linked to the necessity of the viroid to retain its structural conformational integrity, crucial for its functional biochemical ability to interact with specific grapevine cellular host factors required for HSVd propagation.

Funder

Scientific Grant Agency of the Ministry of Education and Slovak Academy of Sciences

the European Union’s Horizon 2020 Research and Innovation Program

Operational Programme Integrated Infrastructure

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3