mRNA Profiling and Transcriptomics Analysis of Chickens Received Newcastle Disease Virus Genotype II and Genotype VII Vaccines

Author:

Pandarangga Putri12ORCID,Doan Phuong Thi Kim23ORCID,Tearle Rick4,Low Wai Yee4ORCID,Ren Yan4ORCID,Nguyen Hanh Thi Hong2,Dharmayanti Niluh Indi5,Hemmatzadeh Farhid2ORCID

Affiliation:

1. Departemen Klinik, Reproduksi, dan Patologi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang 85001, Indonesia

2. School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia

3. Department of Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam

4. Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia

5. National Research and Innovation Agency, Jakarta 10340, Indonesia

Abstract

Newcastle Disease Virus (NDV) genotype VII (GVII) is becoming the predominant strain of NDV in the poultry industry. It causes high mortality even in vaccinated chickens with a common NDV genotype II vaccine (GII-vacc). To overcome this, the killed GVII vaccine has been used to prevent NDV outbreaks. However, the debate about vaccine differences remains ongoing. Hence, this study investigated the difference in chickens’ responses to the two vaccines at the molecular level. The spleen transcriptomes from vaccinated chickens reveal that GVII-vacc affected the immune response by downregulating neuroinflammation. It also enhanced a synaptogenesis pathway that operates typically in the nervous system, suggesting a mechanism for the neurotrophic effect of this strain. We speculated that the down-regulated immune system regulation correlated with protecting the nervous system from excess leukocytes and cytokine activity. In contrast, GII-vacc inhibited apoptosis by downregulating PERK/ATF4/CHOP as part of the unfolded protein response pathway but did not affect the expression of the same synaptogenesis pathway. Thus, the application of GVII-vacc needs to be considered in countries where GVII is the leading cause of NDV outbreaks. The predicted molecular signatures may also be used in developing new vaccines that trigger specific genes in the immune system in combating NDV outbreaks.

Funder

Australian Centre for International Agricultural Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3