Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins

Author:

Delgado-Rodriguez Sofia E.1,Ryan Andrew P.1,Daugherty Matthew D.1ORCID

Affiliation:

1. Department of Molecular Biology, School of Biological Sciences, University of California—San Diego, La Jolla, CA 92093, USA

Abstract

Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host–virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.

Funder

National Institutes of Health

Pew Biomedical Scholars program

Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease program

NIH

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3