Role of Recognition MicroRNAs in Hemaphysalis longicornis and Theileria orientalis Interactions

Author:

Luo Jin12ORCID,Tan Yangchun12,Zhao Shuaiyang1,Ren Qiaoyun1,Guan Guiquan1,Luo Jianxun1,Yin Hong13,Liu Guangyuan1

Affiliation:

1. State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China

2. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

3. Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China

Abstract

Ticks are an important type of pathogen transmission vector, and pathogens not only cause serious harm to livestock but can also infect humans. Because of the roles that ticks play in disease transmission, reducing tick pathogen infectivity has become increasingly important and requires the identification and characterization of these pathogens and their interaction mechanisms. In this study, we determined the miRNA expression profile of Hemaphysalis longicornis infected with Theileria orientalis, predicted the target genes of miRNAs involved in this infection process, and investigated the role of miRNA target recognition during host–pathogen interactions. The results showed that longipain is a target gene of miR-5309, which was differentially expressed at different developmental stages and in various tissues in the control group. However, the miR-5309 level was reduced in the infection group. Analysis of the interaction between miRNA and the target gene showed that miR-5309 negatively regulated the expression of the longipain protein during the infection of H. longicornis with T. orientalis. To verify this inference, we compared longipain with the blocking agent orientalis. In this study, the expression of longipain was upregulated by the inhibition of miR-5309 in ticks, and the ability of the antibody produced by the tick-derived protein to attenuate T. orientalis infection was verified through animal immunity and antigen–antibody binding tests. The results showed that expression of the longipain + GST fusion protein caused the cattle to produce antibodies that could be successfully captured by ticks, and cellular immunity was subsequently activated in the ticks, resulting in a subtractive effect on T. orientalis infection. This research provides ideas for the control of ticks and tickborne diseases and a research basis for studying the mechanism underlying the interaction between ticks and pathogens.

Funder

National Parasitic Resources Center

Agricultural Science and Technology Innovation Program

NBCIS

Science Fund for Creative Research Groups of Gansu Province

GSKJT program

State Key Laboratory of the Veterinary Etiological Biology Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3