Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves

Author:

Wassermann Birgit,Korsten Lise,Berg Gabriele

Abstract

Understanding the plant microbiome is a key for plant health and controlling pathogens. Recent studies have shown that plants are responsive towards natural and synthetic sound vibration (SV) by perception and signal transduction, which resulted in resistance towards plant pathogens. However, whether or not native plant microbiomes respond to SV and the underlying mechanism thereof remains unknown. Within the present study we compared grapevine-associated microbiota that was perpetually exposed to classical music with a non-exposed control group from the same vineyard in Stellenbosch, South Africa. By analyzing the 16S rRNA gene and ITS fragment amplicon libraries we found differences between the core microbiome of SV-exposed leaves and the control group. For several of these different genera, e.g., Bacillus, Kocuria and Sphingomonas, a host-beneficial or pathogen-antagonistic effect has been well studied. Moreover, abundances of taxa identified as potential producers of volatile organic compounds that contribute to sensory characteristics of wines, e.g., Methylobacterium, Sphingomonas, Bacillus and Sporobolomyces roseus, were either increased or even unique within the core music-exposed phyllosphere population. Results show an as yet unexplored avenue for improved plant health and the terroir of wine, which are important for environmentally friendly horticulture and consumer appreciation. Although our findings explain one detail of the long-term positive experience to improve grapevine’s resilience by this unusual but innovative technique, more mechanistic studies are necessary to understand the whole interplay.

Funder

Servicestelle für Mobilitätsprogramme des österreichischen Bundesministeriums für Bildung, Wissenschaft und Forschung, KulturKontakt Austria

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3